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Diffusion in stably stratified turbulence 

By Y. KIMURA'.2t  A N D  J.  R. HERRING'  
'National Center for Atmospheric Research. PO Box 3000, Boulder, CO 80307, USA 

'Program in Applied Mathematics. University of Colorado, Campus Box 526, Boulder, 
CO 80309-0526, USA 
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We examine results of direct numerical simulations (DNS) of homogeneous turbulence 
in the presence of stable stratification. We focus on the effects of stratification on eddy 
diffusion, and the distribution of pairs of particles released in the flow. DNS results 
are presented over a range of stratification, and at Reynolds numbers compatible with 
aliased free spectral results for a resolution of 1283 mesh points. We compare results 
for particle dispersion to simple analytic theories such as that proposed by Csanady 
(1964) and Pearson et ul. (1983) by adapting the basic Langevin model to decaying 
turbulence at low Reynolds numbers. Stable stratification is found to arrest both 
single particle displacements and pair separation in the direction of stratification, but 
it leaves these quantities nearly unaltered in the transverse direction. With respect to 
the dynamics of stratified flows, we find that regions of strong viscous dissipation are 
intermittently spaced, and are associated with large horizontal vorticity, consistent 
with recent experimental results by Fincham et a / .  (1994). 

1. Introduction 
In atmospheres and oceans, flows are usually stably stratified. Numerical simula- 

tions of such flows play a vital role in improving our understanding of geophysical 
and astrophysical turbulent phenomena. In particular, diffusion problems in strati- 
fied turbulence are not only of scientific and mathematical interest, but are also of 
practical importance in environmental and industrial research. For example, param- 
eterization of eddy diffusivity with Stratification and sometimes rotation is crucial in 
various atmospheric and ocean models. 

The central nature of stratified turbulence is the coexistence of waves and turbu- 
lence, between which the kinetic energy is partitioned (Riley, Metcalfe & Weissman 
1982; Metais & Herring 1989; Herring & Metais 1989). The latter enhances diffusion 
by way of eddy transport, while the former contributes to an oscillatory motion of 
the scalar. with, perhaps, little dispersion. Overall, it is thought that stratification 
suppresses diffusion in the direction of stratification (for experimental confirmation 
of this point, see Britter et a/. 1993, in particular, figure 3). 

This paper studies these aspects of diffusion in stably stratified turbulence using 
direct numerical simulations (DNS). We also examine the dynamics of such flows, 
their structural features, and single and particle-pair dispersion, utilizing a high-order 
particle-tracking scheme (Yeung & Pope 1989). The methodology here is the same as 
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in a previous report (Kimura & Herring 1995) which discussed results of calculations 
with 643 grid points. This paper extends the discussion to a resolution of 1283. 

The suppression of diffusion in the direction of stratification was theoretically 
predicted by Csanady (1964) with an heuristic stochastic modelling of the pressure 
term in the Navier-Stokes equation. For stationary turbulence, he proposed a 
Langevin model with an exponential form for the velocity auto-correlation function, 
and a linear incorporation of buoyancy effects in the stratified direction. Comparison 
of his theory with decaying turbulence simulations is another purpose of this paper. 

We analyse numerical results with simple scaling laws and underlying concepts 
drawn from the statistical theory of turbulence. Such statistical ideas are cleanest 
at asymptotically large Reynolds numbers, a domain remote from DNS. How- 
ever, the basic assumptions of the statistical theory apply equally, and perhaps 
better, to low-Reynolds-number, rapidly decaying flows, and in this paper we check 
to see to what degree DNS and statistical theory agree at low Reynolds num- 
bers (& - 20). Our method is to use the statistical theory to extract the func- 
tional dependence of dispersive effects on turbulence spectra and other parame- 
ters, and to compare these to the DNS results. Numerical results are provided 
in $3, and analysis is given in $4, after a description of simple statistical predic- 
tions for eddy diffusion and particle dispersion in the presence of stable stratifi- 
cation. Section 5 presents a summary of our results, and $6 states our conclu- 
sions. 

2. Methodology 

imation, 
The (non-dimensionalized) Navier-Stokes equations within the Boussinesq approx- 

(2.1) 

(2.2) 

v . u  = 0, (2.3) 

2 (a, - vv )u = -u .vu -  v p  + ei, 
(a, - KV2)t l  = - N 2 W  - u VB, 

are solved in a 271-periodic box ( 1283 grid points) using the pseudo-spectral method 
with the 2/3 rule for de-aliasing. (We recall that such methods are equivalently 
Galerkin, since the 2/3 rule eliminates aliasing errors (Orszag & Patterson 1972).) 
Our notation is that u is the velocity, whose ( x , y , z )  components are (u ,v ,w),  and 
B is the temperature fluctuation about the linear (stable) mean temperature pro- 
file dT/dz = -N2). N is the Brunt-Vaisala frequency, ( g a ( a r / d z ) / T o ) ' / 2 .  Here, 
M = {d ln(p)/d 1n(T)jp. Periodic boundary conditions are used in the calcula- 
tion for u and tl by assuming a linear ambient density profile. For the time 
advancement, the low-storage third-order Runge-Kutta method by A. A. Wray is 
used. 

Particle trajectories are computed by solving dXj(t)/dt = u(X,,  t )  using the same 
time-marching scheme as with the velocity. Cubic spline interpolation is used to 
get the necessary fine-scale information for X j ( t )  (Yeung & Pope 1989). Because 
of periodic boundary conditions, we can use the fast Fourier transform for solving 
the tridiagonal matrix equation for the spline function. The DNS consists of an 
initial Gaussian random isotropic velocity field which has a three-dimensional energy 
spectrum given by 

(2.4) E ( k )  = 16( 2/71) ' / 2 ~ & 5 k 4 e ~ p (  -2( k / k o ) 2 )  
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FIGURE I. Statistics of the velocity field for N 2  = 0, 1, 10, 100, 1000. (a) The kinetic energy, 
( h )  the enstrophy, (c) the skewness of du/Sx. ( d )  the skewness of 2w/cSz. 

with ko = 4.767 and uo = 1.242. (The basic code and numerical procedure is described 
in Kimura 1992.) The kinematic viscosity v = 0.005, and the Prandtl number 
P, = v K = 1. The initial Taylor-microscale Reynolds number is - 84. Starting with 
decaying turbulence, stratification and temperature fluctuations are introduced after 
the enstrophy reaches its peak value at t - 0.6. By this time, the velocity derivative 
skewness has reached its maximum value of - 0.5 (figure 1). Both facts imply that 
small scales are fully developed by the time stratification is introduced (at t = 1.0). 
In addition, by this time, small-scale truncation errors (aliasing) have had a chance 
to dissipate. 

Lagrangian particles are released at t = 1. A total of 13824 = 243 pairs of particles 
are used to get clean Lagrangian statistics. Initially, one set of particles is located at 
regularly spaced three-dimensional grid points, xj(0) and the other set of particles is 
placed at xJ +AxJ, where Axj = (d ,  0,O) and d = 0.005. If measured by the dissipation 
scale vo = ( v ' / ~ ) ' / ~  at t = 0.6, this initial displacement d corresponds to 0.257~0. The 
small values of skewnesses found here are consistent with the tendency for velocity 
gradients to become Gaussian with increasing N ,  as reported by MCtais & Herring 
(1989). 
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FIGURE 2. The kinetic and potential energy spectra for N2 =loo. (Potential energy is not normal- 
ized by N2. )  (a )  t is from 1.0 to 1.6, and ( b )  t is from 5.0 to 5.6. The time interval of plots 
is 0.2. 

3. Numerical results 
Figure 1 summarizes the overall statistics of turbulence for N 2  = 0, 1, 10, 100, and 

1000. (Hereafter, the label N 2  = 0 means the turbulence is uncoupled from both the 
mean and fluctuation temperature fields.) Both kinetic energy, 

and enstrophy 

D = 1 k 2  I ~ ( k )  l 2  ( 3 4  
k 

decay almost as a power of time ( E ( t )  - t P ) ,  with some oscillatory fluctuations due 
to conservative energy exchange between kinetic and potential energy. We denote the 
latter by 

k 

The value of p becomes smaller with increasing N .  This fact is consistent with the 
faster decay of the skewness factor of the longitudinal velocity gradient field duldx: 

(3.4) 2 312 Sx = - ( (WW3)/((wW ) 2 

which is a measure of the energy cascade to smaller scales. S, is shown in figure l(c). 
The decay of S in the vertical direction is significant if there is stratification, and thus 
the inhibition of the energy cascade to smaller scales keeps the kinetic energy from 
the dissipation range. This observation goes back to Riley et al. (1982). 

The inhibition of the energy cascade is also reflected in the fact that the energy 
spectrum becomes steeper with increasing N. Typical spectra for Ekin(k) and E,,,(k) 
are shown in figure 2. These spectra have been spherically averaged over wavenumber 
bins of unit radial thickness. Two time slots are shown for N 2  = 100: one around 
t = 1.0, when S, is sharply dropping (figure 2a), and the other around t = 5.0, by 
which time S, has fallen and begun oscillating around zero (figure 2b). (The potential 
energy (shown in figure 2b) is not divided by N 2  = (100)). In figure 2(a), lines are 
shown which correspond to the Bolgiano-Obukhov spectra of kinetic energy and 
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temperature fluctuation predicted for stratified turbulence ( E k , , , ( k )  - k-"I5, Epo, (k)  - 
k - * , > ) .  Although spectra with similar slopes can be observed for a small range of 
wavenumbers at earlier times, soon they are overtaken by the dissipation spectra 
(a near-exponential range), and thus it is not conclusive whether the Bolgiano- 
Obukhov physics operates for the present low-Reynolds-number decaying flow. At 
high wavenumbers, the kinetic and potential energies show the same slope, and if 
the latter is normalized by N' = 100, they are equipartitioned. (Strong anisotropy 
may exist in the large-scale velocity field, and then presenting horizontal and vertical 
spectra separately may be more appropriate (Metais & Herring 1989).) 

As noted above. both the steepness of the kinetic energy spectrum and the smaller 
value for p for the decay of the total energy may be related to the cascade reduction 
induced by stratification. Simple closure estimates of the EDQNM sort also suggest 
this. The essence of such a theory is that energy transfers to progressively smaller 
scales (of size h / k )  because of their straining by somewhat larger scales. Such strain 
is imagined to be a stochastic process, and we shall call the duration of straining 
events q - l ( k ) .  For isotropic turbulence, q ( k )  - (,I;! p'dpE(p))' '. while for strongly 
stratified turbulence, an effective value of q ( k )  - N is plausible. ( A  more quantitative 
discussion of these issues is to be found in Godeferd & Cambon 1994.)t At any rate, 
if the cascade of energy to small scales is local (as supposed, for example, by Leith 
1967), the time development of the energy spectrum. E ( k )  is determined by 

(3.5) (i, + 2,k'jE = c'n jk4?, jE(k j q ( k / k 2  ; ;. 
From ( 3 . 5 )  follows E(kj - ~ ' " k - ~  -' for q ( k )  - (,L; dpp'E(p))'  '. and 

E ( k )  - ( C N p / k ?  (3.6) 

for strong stratification (Herring 1988). Scaling laws such as (3.6) have been proposed 
(Zhou 1995) and confirmed (Yeung & Zhou 1995) for rotation turbulence. In that 
case, the rotation rate replaces N in (3.6). We expect that (3.6) would describe a 
largely two-dimensional spectrum that would blend into an isotropic kk5I3 range as k 
increases beyond ko = ((N3/c))l ', 

We may also estimate the efl'ects for the derivative skewness of the velocity field 
from (3.5). For isotropic turbulence. S = \ 'dkk'T(k) - 1, and again ignoring possible 
effects of anisotropyt, we find that for strongly stratified turbulence 

Thus, the DNS results seem to be roughly in qualitative agreement with such simple 
theoretical estimates. 

If we now assume that spectrum (3.6) extends to a wavenumber k l ,  below which 

To see how the Brunt Vaisalii frequency enters the statistical formalism. we rewrite (2.1)-(2.3) 
in a more symmetric form by rescaling the temperature field ~3 + H/N. and then intro- 
ducing the Craya representation of u ( k )  = e l ( k ) d [ ( k )  + P 2 ( k ) ( l ) 2 ( k ) , e l ( k )  = k x $/ 1 k x 4 1. 
e 2 ( k )  = k x ( k  I $) /  1 k x ( k  x g i  1 .  The variable P = & ( k )  + \ - l i p ( k )  satisfies an equation of 
the form 2 = \ - 1  I 7 + . F ( Y , ~ / i ~ . q 5 ~ ) ,  where B is that bilinear functional of its arguments that 
stems from advection and pressure effects. Here . I ' = Nsin(3i. I f  the EDQNM model of turbulence 
is implemented on this equation, the eddy-damping rate is changed rrom its isotropic form ~ l ( k )  to 
~ ( k )  + ( - - I .  1 ' ) '  ' Because the gravit? waves are dispersibe (frequencq - Nsin(!J), their effect on 
energy transfer IS - (a' + N ' ) '  '. 

Although i t  may be argued that anisotropy for the small scales which contribute to SI is not 
vital. since turhulcncc becomes progressively more isotropic with increasing I;. 

-.. 

~. 
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FIGURE 3. The Richardson number as a function of time for N 2  =1, 10, 100, 1000. 

the initial spectral shape E ( k )  - k4 persists, and join its shape continuously with (3.6), 
we may deduce the decay of total energy by using b(t) = --f to find 

E ( t )  - t-5’7. (3.8) 

Note that the same analysis applied to isotropic turbulence leads to the law E ( t )  - 
t - l0 /7  , as originally proposed by Kolmogorov (1942), and subsequently derived (with 
the modification E ( t )  N t-’.37 ) by Lesieur & Schertzer (1978) on the basis of the 
EDQNM. The DNS results indicate that E(t) - t-’ as N ---f a. It is unclear whether 
this discrepancy with closure estimates is a low-Ri result (as for the case in which 
N = 0), or whether the closure is missing an important dynamical componentt. We 
have not considered here the possibility of a saturation spectrum Ekin - N2/k3, as 
would be obtained if wave breaking alone determined the spectrum. Note that this 
spectrum cannot decay, contrary to DNS. But we cannot argue against the existence 
of a saturation spectrum at large RA, or at least a spectrum with a saturated segment. 

Figure 3 shows the time dependence of the Richardson number Ri = N 2 / ( ( a u / 8 z ) * )  
for N 2  = 1, 10, 100 and 1000. This figure demonstrates that flows are quite stable all 
the time for all the values of N. 

Figure 4 shows the mean square of the vertical displacement, (Z2)( t ) ,  of particles 
from their initial position for N 2  = (0, 1, 10, 100, and 1000). For stationary 
turbulence, the slopes of such curves would give the eddy diffusion coefficient. We 
note a pronounced decrease in particle displacement with increasing N .  At higher 
values of N, the curves level off at (Z2) ( t )  - N-*. The case is put more dramatically in 
figure 5,  which shows the distribution function for the vertical displacement z ( t )  -z(O). 

t The analysis leading to (3.8) must be modified if k , ( t )  encounters the cut-off wavenumber, 
k, = 1. In that cases, kl is fixed, and a reworking of the Lesieur-Schertzer analysis with this 
constraint does indeed yield Ekin(t) - tr’ .  
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square of the vertical displacement (Z ' ) ( t )  for N 2  = 0, 1, 10, 100, 1000. 

Notice that even for modest stratification (N = l), particles cease to migrate in the 
vertical, and in fact their distributions become slightly more narrow at late times. 
Similar curves for ( X 2 ) ( r )  and ( Y 2 ) ( t )  show few effects of stratification, and their 
distribution functions are quite similar to those for unstratified turbulence. Figure 6 
shows the r.m.s. of vertical separation of particle pairs, 

. n  
1 

( p : )  = ~ ( A Z , ) '  
j =  I 

(3.9) 

for N' = 0, 1, 10, 100, and 1000. Also shown on the figure are straight lines showing 
the initial Taylor range, - t' , the long-time diffusion law, t112, and the Batchelor 
range, t '/2 in between. At later times, when two particles are almost independent 
of each other, the curves level off at progressively lower values with increasing N2.  
(For N 2  = 100 and 1000, the growth is so slow that their values of ( Z ' )  have not 
reached equilibrium by t = 10.) Higher-frequency oscillations are also evident for 
large stratifications. Of course, we must recall that the value of R, for the DNS is 
too low for inertial effects (which are needed to derive the t3/* regime) to be fully 
expressed. Hence, the tangential 'agreement' in the Batchelor range is more a matter 
of a necessary transition between t' at short times, and t ' 1 2  at long times, than a 
confirmation of the influence of inertial effects. We should also note that the present 
study is at low R,, whereas the classic time power laws assume that R, + co. Hence, 
Z2( t )  4 t IS not expected. 

The dispersion of particles can be related to the Lagrangian auto-correlation 
function, 

(3.10) &(T, t o )  = (w(to)w(to + T))/(N12(to)). 
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Figure 7 shows RZ&, to)  for several values of N 2 ,  and for to = 1. The time dependence 
is not dissimilar to 

Rz,(.r, to )  - e-pTcos(m + p )  (3.11) 

as suggested by Csanady (1964) for stationary turbulence. However, what is really 
needed to get particle displacements is R,,(T,~o) ,  where (-to 6 .r < 0), i.e. an 
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integration into the past from the time of observation, to in (3.1 1). However, we have 
at present no stable integration techniques for this quantity. 

4. DNS eddy diffusion and its modelling 
We now examine the possible relationship of the numerical results of $3 for ( Z 2 ) ( t )  

to Langevin estimates drawn from the statistical theory of turbulence. The Langevin 
model that we consider estimates the Lagrangian velocity by 

= -pZ(t)8 - N2w, 
d8 
dt 
- 

where f ( t )  is a white-noise forcing function, and pl(t),  p2(t) are decorrelation rates. 
(In the following analysis, we set pl = p2 = p(t), for simplicity. We have repeated the 
calculations and analysis for the case p1 # p2, and we discuss briefly the differences 
such a change makes at the end of this section.) Here, f ( t )  represents the pressure- 
gradient force. Its representation as a random force has been justified by the fact 
that it originates from fluctuations that are some distance from the particle, and are 
hence uncorrelated with it (It is interesting to note that both single-point distribution 
functions for the pressure and its gradient appear to be insensitive to the strength of 
the stratification, according to our DNS.). We must add to (4.1)-(4.2) information 
assured by the overall conservation laws of total energy associated with (2.1)-(2.3). 
For the present model, we find, from (4.1) and (4.2), the quadratic constraints 

A { w 2  + N-282} = -p(t)(w2 + N-*d2) + o(t) (4.3) 

with (f(t’)f(t)) = o(t)d(t-t’). (A more consistent modelling would perhaps start from 
a Langevin spectral model for dw(k, t )  = . . ., as represented by an EDQNM such as 
the test field model (Kraichnan 1971).) Notice that in (4.1), we have explicitly included 
a damping term in modelling the Lagrangian velocity. On this point, we differ from 
the early work of Csanady (1964), in which such a term is omitted. Its omission 
implies that for the unstratified case ( N  = 0), and for stationary forcing, (w2) increases 
linearly with time. Equation (4.1), with the pw term, is thus more analogous to what 
would be derived from the test field model, which proposes spectral equations (for 
q a n d  0) that contain both random forcing and damping terms for both the velocity 
and scalar fields. The role of the damping terms is to provide energy and entropy 
conservation by nonlinear terms. We can obtain the analytic solution of (4.1) and 
(4.2) with the initial condition w(0) = WO, and d(0) = 0 as 

w(t) = wo cos Ntexp - I’ dt’p(t’) + Jo’ dsf(s) cos N ( t  - s) exp - 1’ dt’p(t’), (4.4) 

d ( t )  = - lt Ndsf(s) sin N ( t  - s) exp - 1‘ dt’p(t’), (4.5) 

and from the above solution, 
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where g(t ,  s) is the Green’s function, 

g(t ,s)  = cos[N(t - s)] exp - .if dt’p(t’). (4.7) 

We may test the validity of models such as (4.1)-(4.2) by using in (4.6) the DNS 
constraint imposed by (4.3). In implementing this step, we should use smoothed 
values of (w2) and (02), thereby eliminating any spurious rapid fluctuations of 0. The 
value of p ( t )  and its dependence on N is as yet open. Physically, p(t) represents the 
Lagrangian decorrelation time of the flow, and for unstratified flow we would expect 
it to be - -E/E. But its dependence on N is not at all clear. We may note, in this 
connection, that for stationary turbulence (0 and p independent of time), (4.6) implies 
that Z2( t )  -+ (op2/N4) t ,  for p / N  + 0). Such a limit seems qualitatively smaller 
than previous theoretical estimates (Cox, Nagata & Osborn 1969; Lilly, Walko & 
Adelfang 1974; Weinstock 1978), all of which argue for (Z’) ( t )  - ( p / N 2 ) t .  Their 
result is also implied by a simple closure prescription: modify the Kraichnan (1976) 
formula for eddy conductivity ( ~ , d d ~  = (i)  J: dkE(k)/r](k), replacing the lower limit 
by ko = ( ( N 3 / c ) ’ / 2 ) ,  so that only scales smaller than the Ozmidov scale participate in 
dispersion of particles. Thus, the Langevin model (4.1)-(4.2) may be reconciled with 
earlier theoretical estimates if 

p ( t )  - N ,  N -+ a. 

p ( t )  = A E / E  + B N  

(4.8) 

(4.9) 

The above discussion suggests that 

(with ( A ,  B )  arbitrary) would incorporate, roughly, the damping rate for decaying 
stratified flows. 

A modification to Csanady’s model similar to (4.9) (with only B # 0) was proposed 
by Pearson, Puttock & Hunt (1983) for stationary stably stratified turbulence. These 
authors demonstrated that the behaviour of ( Z 2 ) ( t )  after a certain time differs 
depending on whether there is a mechanism for interchange of density for fluid 
elements. In particular, if interchange of density exists, ( Z 2 ) ( t )  begins a linear growth 
after showing a plateau. Such a prediction agrees with the present Langevin analysis 
for decaying turbulence if we use B # 0. 

Figure 8 shows the results of (4.6), in which (w2)( t )  and (Q2)( t )  in (4.3) for o ( t )  are 
estimated as power-law least-square fits to the DNS decay profiles. These results are 
for A = 8.0, and B = 0. in (4.9). We note a quantitative agreement between the model 
and the DNS results as presented in figure 4 for the larger values of N .  Calculations 
with B # 0 typically predict that (Z’(t))  increases as a power law in t at late time, in 
contradiction to the DNS of figure 4. 

The reason that B # 0 in (4.9) gives poorer results is still open. As noted above, 
there are two avenues to a p - N model: (i) an assumed damping of energy by 
radiation of gravity waves in the far-field, as proposed by Pearson et al. (1983), and 
(ii) as a modification of the Kraichnan eddy-diffusivity formula, suppressing diffusion 
by scales larger than the Ozmidov scale. Both of these assume stationary turbulence. 
Moreover, with regard to the first avenue, arguments for wave damping are perhaps 
vitiated in a periodic domain, since waves exiting the computational domain re-enter 
at an appropriate boundary point. Perhaps, for decaying flows, we should expect 
other types of parameterization for eddy-viscosity and/or eddy-diffusivity. 

We have experimented with (4.1)-(4.2) for the case I - ( ]  # I-(? (and in particular p2  < 
p l ) ,  with little success in improving the comparison of the model with DNS at small 
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FIGURE 8. The mean-square of the vertical displacement ( Z 2 ) ( t )  for N 2  = 0, 1,  10, 100, 1000, for 
the Langevin model described by (4.1)-(4.9). -, N 2  = 0;  - - -, N 2  = 1; - - - -, NZ = 10; - - -, 
N 2  = 100; - - -, N 2  = 1000. For the curves shown, A = 8.0, and B = 0, in (4.9). 

N. The only qualitative improvement is the reproduction of the d(Z2)/dt < 0, feature 
of figure 4 for large N. It is clear that if (4.1)-(4.2) is credible, a dependence of p on 
N must be admitted. The data suggest a dependence such as p - (a+bNt / ( l  + N t ) ) / t ,  
with a - 1, and b - 7. The combination N t  is dictated by dimensional considerations. 

5. Discussion of dynamical issues 
The properties of diffusion may well have a close relation with the structure of the 

flow field, as has been suggested by Fung et al. (1991). Figure 9 shows the isosurfaces 
of enstrophy at t = 4 for N 2  = 0, 1, 10, and 100 (the surface level is 5 times the 
r.m.s. value). We observe scattered pancake-shaped vortex patches lying almost in 
the horizontal plane. These two-dimensional pancakes contrast significantly with the 
vortex tubes often observed in homogeneous isotropic simulations (Siggia & Patterson 
1978; Kerr 1985; She, Jackson & Orszag 1990). They also provide us with a new 
image of structures in stratified turbulence. Previously, simulations (Mktais & Herring 
1989) and experiments (Fernando 1988) showed vortex sheets that extended in the 
horizontal plane as a typical manifestation of two-dimensionalization of stratified 
turbulence. Scattered pancakes seem a good candidate for the final structures in 
decaying stratified turbulence. 

The vertical length scale (the thickness of the patches or their vertical spacing) 
should be related to the Ozmidov scale (Fernando 1988). It is interesting to note that 
these strong enstrophy regions are strong vertical-shear regions, and this is verified 
by checking the direction of vorticity vectors in these regions. Figure 10 illustrates 
the distribution of the polar angle of vorticity vectors, 
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N? = 0 N 2 =  1 

N 2 =  10 N 2 =  100 
FIGLJRF 9. Isosurfaces of enstrophy for N' = 0, 1 ,  10, 100 at I = 4.0. The contour level is four times 

the root-mean-square enstrophy. 

for several values of N' (normalized by 2nsinO). Vorticity vectors are more horizontal 
for higher stratification. Furthermore, we observe that vectors with larger magnitude 
tend to be more horizontal. 

Figure 11 illustrates the isosurface of the z-component of vorticity and vortex lines 
starting from a positive vortex blob. Three groups of vortex lines are shown. Those in 
group ( a )  are chaotic. Since the figure is made from a snap shot of the vorticity field, 
this is a space projection of the space-temporal chaos. In spite of the concordance 
in shapes and positions of vortex lines, the initial small difference in the position is 
amplified gradually, and the lines separate significantly later. 

Group ( 6 )  contains vortex lines which connect to another strong vertical-vorticity 
region. In addition the vortex lines get bent just outside the blobs due to the strong 
shear. This group verifies one of the categories of vortex network (positive-positive) 
suggested by Fincham, Maxworthy & Spedding ( 1994). The group (c) seems exotic. 
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FIGURE 10. Polar angle distribution of vorticity vectors. (a) t = 5, (b)  t = 10. 

FIGURE 11. Typical groups of vortex lines starting from a strong positive vertical vorticity region 
(centred, dark) for N 2  = 100 at t = 10.0: (a) (spatially) chaotic vortex lines that are sensitive to 
small initial differences in space, (b)  vortex lines which connect to another strong positive region 
(dark above) after being bent by the strong shear in between, (c) vortex lines which connect to a 
strong negative region (light next to the centred) and come back to the positive one, which iterates. 
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The vortex lines starting from the positive region are diverted by the shear toward a 
strong negative region and then pulled into it. These vortex lines are an example of 
another category of the vortex network (positive-negative). It is most surprising that 
these vortex lines return toward the positive blob again, making a loop between the 
positive and negative blobs. This loop is repeated several times as if they formed a 
coil of vortex lines or an assembly of vortex rings. The case (c), being maybe a rare 
event, implies the possibility of the induction of a strong jet penetrating the coil. 

The paper by Fincham et a/ .  (1994) addressed the question of why, under stable 
stratification, large-scale (vertical) vortices cannot be produced, and conjectured that 
the strong shear bends vortex lines horizontally and keeps them from connecting 
strong vertical-vorticity regions. Along with this conjecture, they proposed several 
possible connections of vortex lines called the vortex network. All such categories of 
connections have been verified in our present simulations. Furthermore, we observed 
that the direction of horizontal shear flow is random, which results in the three- 
dimensional (spatial) chaos of vortex lines and randomly scattered pancake-shaped 
vortices. 

If rotation is imposed in addition to stratification, it has been reported that the 
inverse cascade of energy is enhanced to generate large vertically coherent vortices 
(Mdtais et al. 1996; McWilliams, Weiss & Yanneh 1994) For the generation of coher- 
ent vortices, rotation should be strong enough to compensate for the decorrelation 
of velocity in the vertical direction which is the main characteristic of stable strat- 
ification. The properties of particle diffusion under stratification and rotation are 
another topic in the study of geostrophic turbulence, and will be reported elsewhere. 
In particular, the effect of coherent structure on diffusion requires new insights both 
theoretically and experimentally. 

6. Conclusions 
In this paper, we have examined stably stratified turbulence, and the effect of 

stratification on dispersion of particles borne by the flow. We have explored the 
regime of very strong stratification, for which some form of asymptotics may possibly 
be valid. Our tool has been DNS for decaying turbulence, perforce at modest 
Reynolds numbers. We have chosen to examine decaying rather than stationary 
flow because of its cleanness: stationary flow would require a mean shear or stirring 
mechanism for its maintenance, either of which would introduce complications in 
the flow. However, traditional methods of analysing dispersion by turbulence are 
formulated for stationary flow. Therefore to make comparisons of DNS results with 
statistical models (such as that of Csanady 1964), we have extended the latter for 
decaying flows, and taken its parameters (such as energy and dissipation) from the 
DNS. Such phenomenological theories model the particle acceleration as a damped 
oscillator, with a random force, which represents pressure fluctuations along the 
particle trajectories. Both more refined versions of the Csanady model (such as 
that of Fung et a!. 1991) and qualitative reasoning drawn from statistical theories 
(such as Weinstock 1978) suggest a damping depending linearly on the Brunt-Vaisala 
frequency, whereas our DNS results (at very large N )  suggested a damping rate 
independent of N .  Thus, we find a much weaker dispersion of particles than classical 
theories would indicate. The weak, or even negative, dispersion of particle pairs 
found here is surprising, but perhaps not unanticipated. For example, Taylor (1921) 
in his classic paper notes that such constriction of particle trajectories may occur, and 
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associates the constriction with a Lagrangian correlation function of the sort given 
by figure 5. We should also note the study of Riley & Metcalfe (1990), who found 
a striking inhibition of diffusion of a turbulent fluid initially confined in a narrow 
horizontal band within a stable region. 

There remains the question of why our results indicate a much weaker eddy 
diffusion than classical estimates. Perhaps a clue to this dilemma is to be found in 
our discussion following (4.7) of how the classical formula may be obtained from a 
simple closure prescription for eddy conductivity. There, we noted that the classical 
&ddj, = p / N 2  is obtained by suppressing those scales larger than the Ozmidov scale 
(ko = (N3 /e ) I /* ) ,  whose dominantly oscillatory motions contribute little to diffusion. 
A glance at figure l(b) suggests that for most of the cases we have investigated, 
ko is quite large, and hence there is little energy at scales < l /ko ,  the domain of 
near-isotropic turbulence that would contribute to vertical mixing. 

The enstrophy distribution of the turbulence for strong stratification resembles 
scattered pancakes. We do not see the vortex filaments that are the distinguishing 
features of the small scales of isotropic turbulence. The pancakes are consistent with 
an angular distribution of vorticity vectors strongly peaked in the horizontal plane. 
The numerical results suggest that the shape of this angular distribution may become 
asymptotic with N -+ a. Such a distribution is inconsistent with the notion that 
strongly stratified turbulence is similar to two-dimensional turbulence, since energy 
dissipation at small scales is dominated by horizontal vorticity, a component missing 
from two-dimensional dynamics. Our results here are similar to the experiments of 
Fincham et al. (1994) and are in agreement with earlier studies by Metais & Herring 
(1989) and Herring & Metais (1989). 

We are grateful to Dr Jeffrey Weil for many useful discussions. We are also grateful 
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